New Ti-decorated B40 fullerene as a promising hydrogen storage material

نویسندگان

  • Huilong Dong
  • Tingjun Hou
  • Shuit-Tong Lee
  • Youyong Li
چکیده

The newly found B40 is the first experimentally observed all-boron fullerene and has potential applications in hydrogen storage. Here we investigate the binding ability and hydrogen storage capacity of Ti-decorated B40 fullerene based on DFT calculations. Our results indicate that Ti shows excellent binding capability to B40 compared with other transition metals. The B40 fullerene coated by 6 Ti atoms (Ti6B40) can store up to 34 H2 molecules, corresponding to a maximum gravimetric density of 8.7 wt%. It takes 0.2-0.4 eV/H2 to add one H2 molecule, which assures reversible storage of H2 molecules under ambient conditions. The evaluated reversible storage capacity is 6.1 wt%. Our results demonstrate that the new Ti-decorated B40 fullerene is a promising hydrogen storage material with high capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lithium-Decorated Borospherene B40: A Promising Hydrogen Storage Medium

The recent discovery of borospherene B40 marks the onset of a new kind of boron-based nanostructures akin to the C60 buckyball, offering opportunities to explore materials applications of nanoboron. Here we report on the feasibility of Li-decorated B40 for hydrogen storage using the DFT calculations. The B40 cluster has an overall shape of cube-like cage with six hexagonal and heptagonal holes ...

متن کامل

Hydrogen storage capacity of Si-decorated B80 nanocage: firstprinciples DFT calculation and MD simulation

Hydrogen storage capacity of Si-coated B80 fullerene was investigated based on density functional theory calculations within local density approximation and generalized gradient approximation. It is found that Si atom prefer to be attached above the center of pentagon with a binding energy of -5.78 eV. It is inferred that this binding is due to the charge transfer between the Si atom and B80 ca...

متن کامل

Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes.

First principles calculations based on gradient corrected density functional theory and molecular dynamics simulations of Ca decorated fullerene yield some novel results: (1) C60 fullerene decorated with 32 Ca atoms on each of its 20 hexagonal and 12 pentagonal faces is extremely stable. Unlike transition metal atoms that tend to cluster on a fullerene surface, Ca atoms remain isolated even at ...

متن کامل

Hydrogen Adsorption on (5,0) and (3,3) Na-decorated BNNTs

The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a si...

متن کامل

Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium.

We report a first-principles study, which demonstrates that a single Ti atom coated on a single-walled nanotube (SWNT) binds up to four hydrogen molecules. The first H2 adsorption is dissociative with no energy barrier while the other three adsorptions are molecular with significantly elongated H-H bonds. At high Ti coverage we show that a SWNT can strongly adsorb up to 8 wt % hydrogen. These r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015